On Hopf Galois structures and complete groups

نویسنده

  • Lindsay N. Childs
چکیده

Let L be a Galois extension of K, fields, with Galois group Γ. We obtain two results. First, if Γ = Hol(Zpe ), we determine the number of Hopf Galois structures on L/K where the associated group of the Hopf algebra H is Γ (i.e. L⊗K H ∼= L[Γ]). Now let p be a safeprime, that is, p is a prime such that q = (p−1)/2 > 2 is also prime. If L/K is Galois with group Γ = Hol(Zp), p a safeprime, then for every group G of cardinality p(p−1) there is an H-Hopf Galois structure on L/K where the associated group of H is G, and we count the structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed-point Free Endomorphisms and Hopf Galois Structures

Let L|K be a Galois extension of fields with finite Galois group G. Greither and Pareigis [GP87] showed that there is a bijection between Hopf Galois structures on L|K and regular subgroups of Perm(G) normalized by G, and Byott [By96] translated the problem into that of finding equivalence classes of embeddings of G in the holomorph of groups N of the same cardinality as G. In [CCo06] we showed...

متن کامل

On the Galois correspondence for Hopf Galois structures

We study the question of the surjectivity of the Galois correspondence from subHopf algebras to subfields given by the Fundamental Theorem of Galois Theory for abelian Hopf Galois structures on a Galois extension of fields with Galois group Γ, a finite abelian p-group. Applying the connection between regular subgroups of the holomorph of a finite abelian p-group (G,+) and associative, commutati...

متن کامل

Elementary Abelian Hopf Galois Structures and Polynomial Formal Groups

We find a relationship between regular embeddings of G, an elementary abelian p-group of order p, into unipotent upper triangular matrices with entries in Fp and commutative dimension n degree 2 polynomial formal groups with nilpotent upper triangular structure matrices. We classify the latter when n = 3 up to linear isomorphism, and use that classification to determine the number of Hopf Galoi...

متن کامل

Counting Hopf Galois Structures on Non-abelian Galois Field Extensions

Let L be a field which is a Galois extension of the field K with Galois group G. Greither and Pareigis [GP87] showed that for many G there exist K-Hopf algebras H other than the group ring KG which make L into an H-Hopf Galois extension of K (or a Galois H∗object in the sense of Chase and Sweedler [CS69]). Using Galois descent they translated the problem of determining the Hopf Galois structure...

متن کامل

Hopf Galois structures on Kummer extensions of prime power degree

Let K be a field of characteristic not p (an odd prime), containing a primitive p-th root of unity ζ, and let L = K[z] with x n − a the minimal polynomial of z over K: thus L|K is a Kummer extension, with cyclic Galois group G = 〈σ〉 acting on L via σ(z) = ζz. T. Kohl, 1998, showed that L|K has pn−1 Hopf Galois structures. In this paper we describe these Hopf Galois structures.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003